• 销售热线:15190289028

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

新闻中心

所以在低温端可以利用粗管道对3He液浴减

发布者:无锡玛瑞特科技有限公司 发布时间:2021/1/14 23:58:13 点击次数:533 关闭

  声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。详情

  低于1K的温度叫做超低温。获得这样低的温度,除人们所熟知的,通过对4He液浴减压可达温度约0.5K外,还有下列方法:利用3He液浴减压温度可达到0.3K;利用硝酸铈镁(CMN)等顺磁盐进行绝热去磁,可达到几毫开温区;利用3He-4He稀释致冷机可达1.5mK,利用坡密朗丘克冷却和绝热核去磁可达到更低的温度。

  techniques for ultra-low temperature;

  1933年,美国物理学家焦克首先用顺磁盐绝热,获得0.25K的低温。1950年德克勒用铭钒和铝钒的混合晶体绝热去磁方法,获得1.4×10

  K的低温,1956年牛津大学的库尔蒂和P.E,西蒙等人使铜原子的温度下降到2×10

  K。1979年,芬兰赫尔辛基技术大学低温试验采用两级串联的核磁矩绝热去磁方法,使铜核自旋系统达到0.5×10

  K低温记录,它距零度只差5亿分之一。1898年H.卡末林.昂内斯以液态空气预冷氢,利用焦耳-汤姆孙效应使氢气液化(氢的沸点为33.3K),获得接近于零度低温的技术。C.von林德利用节流膨胀焦耳-汤姆孙效应,制成空气液化机(空气中氮的沸点为126.2K,氧的沸点为154.8K),并于1895年创办了大型液化空气工,1908年昂内斯用液氢作预冷使难液化的氦液化(氦的临界温度为5.3K)。1934年P.卡皮察制成了不需液氢只用液氮预冷的氦液化机。液氦在1个大气压下的沸点为4.2K,用减压蒸发法可得0.5K以下的低温。

  超低温技术在许多领域的应用到今天已经有了较大进展,主要应用于能源(超导输电、超导储能、超导电机等),交通(磁悬浮列车、船舶磁推进器),医疗卫生(核磁共振成像、生物磁仪器等),电子技术(超导微波技术应用、各类超导传感技术、半导体—超导体集成电路、高低温交变湿热试验箱超导计算元件等),重大科学工程(加速器、受控热核装置等)和国防技术(超导反潜、扫雷、飞船载入、电磁推进、通讯及制导等)等领域。

  利用3He蒸发的低温恒温器是获得1K以下温度的简便的方法。3He的质量小,零点运动强烈,因此在所有的温度下它的蒸气压比4He都要高。此外,因不存在3He膜,也就没有沿着3He膜的传热或3He蒸发而产生的额外漏热。步入式高低温试验室所以在低温端可以利用一粗管道对3He液浴减压,获得比利用4He液浴减压所能达到的更低的温度。3He的正常沸点是3.19K,通过减压可达稍低于0.3K的温度。

  顺磁盐绝热去磁又称磁冷却。顺磁盐中含有铁或稀土族元素,步入式高低温试验室其3d或4f壳层没有填满因而具有磁矩。当温度高于顺磁盐的磁有序特征温度θ 时(见顺磁性),各个离子间因相互作用较小,比较自由,顺磁盐可看作是一个混乱取向的偶极子体系。当达到温度θ时,发生偶极子的自发取向,系统的熵

  减小。当Tθ时,如果施加一外磁场B=Bi,从体系的温-熵图(图1)可看出,外磁场引起的偶极子择优取向,使体系的熵减少。因此, 如果在减压4He或3He液浴中将顺磁盐预冷到某一温度Ti,然后在与液氦浴保持热接触的条件下施加外磁场进行等温磁化,体系在这过程中释放出来的磁化热为液氦浴所吸收,熵下降。再使盐与周围环境绝热,并将磁场降至B=Bi或零。这样就可以获得显著的降温效果,得到T=Ti或T=T0的温度。绝热去磁所能达到的终温度取决于外磁场强度和顺磁盐的磁有序化特征温度。W.F.吉奥克于1933年完成了顺磁盐绝热去磁实验,获得了千分之几开的低温。

  1956年H.伦敦提出稀释致冷机的原理,1965年台稀释致冷机诞生,它是利用3He-4He混合液的性质设计的致冷机。3He和4He的混合液在0.87K以上温度时是完全互溶的溶液,在0.87K以下时发生相分离,即分成含3He较多的浓相和含3He较少的稀相两部分,两者间构成一界面,浓相浮于稀相之上。当3He原子从浓相通过界面进入稀相时,类似于普通液体通过液面蒸发成气体,要吸热致冷。进入稀相的3He原子通过循环系统重新回到浓相。稀释致冷机结构简单可靠,致冷能力强,可长时间连续工作,可得稳定的可调节的超低温,这是传统的顺磁盐绝热去磁法所无法比拟的,现已获广泛应用。用此法得到的温度为1.5mK。

  温度在0.32K以下时,液态3He的熵比固态3He的熵要小,高低温交变湿热试验箱因而加压发生液-固相变时要吸热,从而达到致冷效果。此法由I.Y.坡密朗丘克于1950年提出,1965年实验成功。此法常在稀释致冷机的基础上使用,可达到的极限低温为1mK。1972年在此低温附近发现了3He的超流新相(见液态氦)。

  原子核的自旋磁矩比电子自旋磁矩要小得多,步入式高低温试验室故原子核磁矩间的相互作用也比电子磁矩间的相互作用弱得多。直到mK温度范围,核磁矩仍然是混乱取向,因而可用核绝热去磁法使核系统降温。通常以稀释致冷机预冷,用超导磁体产生强磁场,使核自旋磁化,再绝热去磁。此法由C.J.戈特和N.库尔蒂分别于1934年和1935年提出,1956年库尔蒂成功地使金属铜的核自旋温度冷却到16μK。后来用二级核绝热去磁使核自旋温度达到50nK(5×10-8K)的极低温,次观察到铜中核磁矩的自发反铁磁排列。物质内部的热运动包括核自旋运动、晶格振动和自由电子运动,3种运动对内能都有贡献,在较高温度时3种运动间的能量交换迅速,可处于热平衡状态,可用同一温度来描述。在极低温度下,三者间的能量交换较慢,高低温交变湿热试验箱不能很快建立热平衡,故应区分与不同运动相联系的温度。与核自旋运动相联系的温度称为核自旋温度。核绝热去磁只能降低核自旋温度。尽管核自旋温度已降到50nK量级,但晶格温度可能仍为mK量级。

  尹延国,黄录官. 超低温技术在提高工模具寿命方面的应用[J]. 模具工业,1997,(05):34-36.

  陈隆智,蒋大宗. 氦和超低温技术在现代医学中的应用[J]. 国外医学.生物医学工程分册,1980,(04):13-16.
以上信息由无锡玛瑞特科技有限公司整理编辑,了解更多高低温试验箱,高低温交变湿热试验箱,步入式高低温试验室,复合盐雾试验箱信息请访问http://www.fsmfc.com

相关新闻